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SUMMARY 

This paper investigates the application of the centre implicit method for the determination of the pressure 
transient in a pipeline, and compares the results with those obtained using the method ofcharacteristics and an 
experimental investigation. The study shows that there are unique values for the stability criterion (ratio of the 
linear and time increments) and the artificial viscosity term (a damping factor) used in the numerical 
computation. The time step and the number of nodes required for the accuracy of the method have been 
considered. The centre implicit method can be readily adapted to transient flow with variable wave speed 
provided the established conditions are used. 
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INTRODUCTION 

Initially, pressure transients in pipelines were analysed using graphical techniques' and the friction 
effect was assumed to be a localized phenomenon at  the ends of the pipeline. The accuracy of the 
graphical method could be improved by increasing the number of localized friction losses, but this 
approach tends to increase the complexity of the solution and lacked the mathematical rigour. 
Later, digital computers were introduced for solving the pressure transient equations in 

The most commonly used analysis is the method of characteristics (MOC), which has 
been applied for solving the pressure transient problems in pipelines with various boundary 
conditions. In the MOC, partial differential equations of hyperbolic type, describing the transient 
flow, are transformed into ordinary differential equations and solved by a finite difference method. 
For one-dimensional, single-phase turbulent flow in a pipeline, the MOC predicts, fairly 
accurately, the pressure  transient^.^.^ However, when the MOC is applied to pipe flows at low 
Reynolds numbers where the flow is two-dimensional, or to multi-phase flow, considerable 
discrepancies are seen between the predicted and experimental  result^.^,^ 

The centre implicit method (CIM) was used in the study of pressure transients in pipelines and 
found to be faster than the MOC when the restriction on the time step is not imposed, but the CIM 
yielded unsatisfactory results for very sudden and sharp  transient^.^ In the CIM, the partial 
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differential equations of the hyperbolic type derived for transient flow in pipelines are directly 
replaced by difference quotients and numerically solved. This procedure could be easily extended 
to equations satisfying the two-dimensional and/or the multi-phase flow.8 The paper investigates 
the CIM for solving pressure transients in pipelines, and the attention is focused on the stability 
criteria, the artificial viscosity term,g a damping factor and the accuracy; and the computer times 
for the MOC and the CIM are compared. 

MATHEMATICAL MODELLING 

To investigate the application of CIM for solving the pressure transient equations, a simple 
pipeline system (Figure 1) with a constant cross-section is considered. The continuity and 
momentum equations for single-phase one-dimensional flow6 are 

Continuity 

aP a P  au 
- + u- + pc2-= 0. 
at ax ax 

Momentum 

1 ap au au dz f 
_- +- + u- + g-+ 2-ulul= 0, 
p a x  at ax dx D 

where c is the wave velocity, D the diameter of the pipe, f the friction coefficient, g the gravitational 
constant, p the transient pressure, t the time, u the mean flow velocity, x the length along the pipe, z 
the elevation of the pipe and p the density of flow. 

Method of characteristics 

equations: 
Solving of equations (1) and (2) by the MOC6 leads to the following ordinary differential 

du 1 dp dz 2f 
- +--+ g- +-ulul= 0, 
dt pcdt  dx D 

Modulus of Elasticity (COPPER) 
=I10 03 GPa (16,000 kpsil 

Diameter of Copper Tube 
10.97 mm I 0  036f t  ) 

Thickness of Copper Tube 
= 0 81 m m  ( 0  032 In 1 

-- 

(3) 

Figure 1. Details of the pipeline system used in the investigation 
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The above equations may be solved by either a graphical or a finite dilference method for various 
boundary conditions. In this study a computer program written in Fortran IV is used for the 
theoretical prediction of results. Figure 2 shows the theoretical pressure transient curve versus time 
at the value for the pipeline system in Figure 1, with and without friction in the pipeline for the 
same rate of flow. The MOC is reported to be unconditionally stable for all mesh sizes Ax, 
as long as the condition At < Ax/c is ~at isf ied,~ which has been found to be true. 

L 

Centre implicit method 

t +A t - -+-- ' IJ"' 

i -1  I i + l  
DISTANCE x 

Figure 3. Notation for the centre implicit method 
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mean velocity, as a variable 4, can be expressed as follows: 

where Ax and At represent the linear and time steps, respectively; 0 is the artificial viscosity term, 
which is dimensionless. The constants (2 - 6) and 8 are introduced in the above equations as 
damping factors which are similar to the artificial friction factor cited by other  researcher^.^^^ The 
damping factor is introduced to investigate the amount of overshoot when the transient pressure 
rises and falls due to sudden closure of a value in the pipeline. If 6 = 1, then equation (5) reduces to 
the standard finite difference form, without any damping factor. 

Similarly, the time gradient of pressure or mean velocity, as a variable 4, at nodal points can be 
expressed as follows: 

The mean velocity u is the arithmetic average of the nodal mean velocity at the current time 
step, which is 

u = 1/2(u: + u:+ (7) 
Substituting the finite difference equations (5)  to (7) into continuity equation (1) and rearranging, 
yields the following equations: 

Substituting, the finite difference equations (5)-(7) into the momentum equation ( 2 )  and re- 
arranging, yields the following equation: 

where 

e 
G2 =-, 

P 
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f (2  - ” ( p :  - p : +  1 )  - 4-ululAx - 2gAz. +- D P 

Equations (8) and (10) are finite difference equations describing the local variations in p and u at any 
instant of time at a cross-section of the pipe. As there are four unknowns, ~ : + ~ ‘ , p i ; y ,  and 
u::?, the solution to these equations at a time step interval needs four equations which are 
obtained by considering two adjacent nodes. Therefore, in a piping system containing N nodes, the 
total number of equations that could be written is ( 2 N  - 2). The remaining two equations are 
obtained by considering the boundary conditions at  the extreme ends of the pipeline. The solution 
of the 2 N  equations simultaneously is termed simply the centre implicit method, because the 
gradient functions (i.e. equations (5) and (6)) are taken at the centres of the nodes in both the 
spatial and time directions. 

Method of evaluation 

The CIM is examined by applying the numerical method to a simple water hammer analysis 
problem, where a single phase fluid is carried in a horizontal pipeline of constant cross-section 
and thickness. The details shown in Figure 1 are identical to the configuration used by Streeter and 
Lai3 The boundary conditions considered are that the upstream pressure remains constant and 
the pressure transient is caused by a sudden closure of a value at  the downstream end. The stability 
criterion is investigated by considering the effect of the ratios of the linear and time steps, and the 
artificial viscosity term 0 on the pressure transients. Further evaluations are made by comparing 
the theoretical predictions with the CIM and the MOC, and both with the experimental results 
presented by Streeter and Lai3 

A computer program for solving the finite difference equations has been written in Fortran IV 
and the flow chart of the program is given in Figure 4. The initial steady conditions are used as the 
starting values, and the transient pressure p and u at the next time step t + At are computed by first 
applying equations (8) and (10) to all nodes. Then the simultaneous equations are assembled to 
give a matrix of the form AX = B. The matrix A is assembled from the coefficients F ,  to F ,  and G, 
to G,, and the matrix B is assembled from the coefficients F ,  and G,. The local friction factor is 
calculated based on the mean velocity given by equation (7) and the following equations based on 
Moody’s diagram for smooth pipes: 

16 
Re’ 

f = - .  for Re < 3000 

1 
= 41og,, [(Re)2J f ]  - 1.6; Re 2 3000 Jf 
RESULTS AND DISCUSSION 

The computer program written for the CIM was run, on an IBM 3081G mainframe computer, to 
investigate the effect of the following: ratios of Ax/At, values of the artificial viscosity term 8 and the 
number of nodes N on the pressure transient at point A of the pipeline system shown in Figure 1. In 
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Figure 4. Computer program flow chart for the centre implicit method 

this study, the effect of the number of nodes on pressure transient has been considered. If the effect 
of grid length is required, it can be determined by dividing the pipe length by (N-1). The computer 
program written for the MOC3 was also run in the same computer and the CPU times were 
determined for different numbers of nodes. In both methods of computation, analyses were carried 
out with and without friction in the pipeline. 

Stability criteria 

The stability criteria basedon the ratios of the linear (Ax) and time (At) increments can be best 
examined by assuming a pipeline system which is frictionless. The pressure transient of such a 
system would be a square wave and the effect of the artificial viscosity term is not present; 
equations (5)-(11) are modified in the computer program by putting 8 = 1. The results of the 
investigation of the stability criteria are given in Figure 5. 

Figure 5 shows that the stable condition is obtained only when Ax/At = c. This results 
contradicts the earlier finding3 that CIM has no restriction on the ratio of Ax/At. In the same 
reference, i t  has been commented that the CIM will yield unsatisfactory results for sudden and 
sharp transients, but the present study shows that satisfactory results can be obtained if the 
stability criterion is satisfied. 

In practice, the sudden pressure change at  a point a will be noticed at a distance A x  away, after a 
lapse of Ax/c seconds, but simultaneous solution of equations (8) and (10) will indicate an 
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Figure 5 .  Predicted pressure transients without friction using CIM for different Ax/At ratios when 0 = 1.000 and N = 31 

appreciable change in pressure and time at a distance A x  away after a lapse of At s. Therefore, 
AxlAt = c is a necessary stability criterion for the CIM. Another point to note is that the 
Courant-Friedrich-Lewy (CFL) stability criterion",' for the solution of hyperbolic equations 
by the MOC is At < Ax/c .  

Criteria on artijicial viscosity (0) 

The criterion Ax/At  = c provides unconditionally stable and accurate results, as long as the pipe 
system is frictionless. If the friction is included for the same case, then the pressure transient 
oscillates for Ax/At  # c, and an overshoot occurs in the pressure transient versus time curves for 
AxlAt = c, as seen in Figure 6. If the value of friction is changed then similar phenomena are 
noticed and the characteristics of oscillation vary slightly. 

To eliminate the overshoot in the pressure transient at Ax/At  = c, the artificial viscosity term 8 is 
introduced, together with the derivative of the variable x ,  which is shown in equation (5). In this 
study, the theoretical prediction is compared with that of the experimental results presented by 
Streeter and Lai3 for a point near the valve. Therefore, the effect of 8 and N on the pressure 
transient at a point near the valve has been investigated. The investigation of any other point is not 
considered because pressure transients at other points would be lower in magnitude. Figure 7 
shows the effect of 8 on the wave form of the pressure transient for the case of sudden closure 
of the valve, when AxlAt  = c. From this it can be concluded that the value 8 = 1.005 gives a 
good wave form for the pressure transient with friction, that the result is very sensitive to small 
changes in the value of 0 and that a change in the pipe friction does not affect this value. 
Figure 8 shows the effect of the number of nodes on the shape of the curve when AxlAt  = c and 
0 = 1.005; as the number of nodes is decreased below 31, the shape of the curve is affected by 
waviness at the extreme pressure transients; a similar effect is not noticed when the number of 
nodes is increased beyond 31. The comparison of Figures 7 and 8 shows that the change of 8 
affects the pressure at extremities of the pipe, whereas the change of N affects the pressure along 
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Figure 6. Predicted pressure transients with friction using CIM for different Ax/At ratios when 0 = 1.000 and N = 31 

the pipeline, when other variables are kept constant. 

Accuracy and computer time 

The other important parameters which need attention in the numerical analysis of engineering 
problems are the accuracy and the computer time. These two parameters were investigated by 
varying the number of nodes N in the pipeline system. The two variables AxlAt  = c and 8 = 1.005 
were kept constant and the numbers of nodes were varied to determine the effect of number of 
nodes on the accuracy and the computer time. 

Figure 8 shows that the accuracy of CIM does not increase very much beyond N = 31, i.e. 
Ax < 3.0 m. However, the computer time, as given in Table I increases with the number of nodes 
and a compromise should be struck between the accuracy and the computer time. The comparison 
of computer time for the CIM and the MOC shows that the CIM requires more computer time 
than the MOC. This is because the CIM involves the solving of simultaneous equations of all 
unknowns at the next. time step, whereas the MOC involves only step-wise iterations. 

Comparison with experimental results 

The experimental results presented in an earlier work by Streeter and Lai3 at two Reynolds 
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Figure 7. Predicted pressure transients with friction using CIM for different values of node N 
when AxlAt = c and 0 = 1,005 
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Table I. Comparison of CPU times for MOC 
and CIM; L= 91.47m 

N CPU time, s CIM - MOC 

CIM MOC MOC 

11 2.05 1.75 17.0 
21 21.54 18.03 19.0 
31 93.57 69.33 35.0 
41 24669 160.48 53.3 

Table 11. 

Case 2 Case 1 

Bulk modulus K:GPa (kpsi) 
Viscosity p x 106:m2/s (ft2/s) 
Density p :  kg/m3 (Ib/ft3) 
Reservoir head H:m(ft) 
Velocity u:m/s (ft/s) 
Reynolds number 

2.2774 (33.000) 2.2 12 (32.000) 
0.64 1 4 (6.904) 0.9 160 (9.859) 

992.8 (6 1.98) 999.0 (62.3 7) 
1 37.46 (451) 13.72 (45) 

0.896 (2.94) 0.1 12 (0.367) 
15,330 1.340 

L 1 
0.0 0.1 0.2 0.3 0.L 0.5 0.6 0.7 0-8 0.9 

TIME ( s 1 

Figure 9. Comparison of experimental and theoretical pressure transients at Reynolds number 15,330: ___ centre 
implicit method; ~~- Streeter’s experimental results ; . . . . . , Streeter’s MOC 

numbers (Table 11) were compared with the theoretical results obtained using the proposed 
method, in which N = 31, AXIL= 0.1, At = AxJc and 0 = 1.005. 

Figure 9 shows the experimental and theoretical results at the Reynolds number 15,330. There is 
a very close agreement between the results; however, the theoretical prediction with the CIM has a 
slight edge over the MOC, which may be due to the fact that the CIM is better suited for modelling 
of the friction than the MOC. The comparison of the results at the Reynolds number 1340, in 
Figure 10, shows that the results obtained with the CIM and the MOC agree well but both differ 
from the experimental results. The discrepancy is due to incorrect modelling of the flow in the pipe 
line at low Reynolds number, which has been eliminated using a two-dimensional model.* The 
results of the two-dimensional model will be published later. 
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CONCLUSIONS 

It can be concluded that the centre implicit method can be used as an alternative method in a 
pressure transient study of pipelines instead of the method of characteristics, which is widely used. 
The centre implicit method used for predicting the pressure transient gives satisfactory results for 
sudden valve closure, provided that the stability criterion Ax/At = c and the value of the artificial 
viscosity term 0 = 1.005 are satisfied. The study shows that the CIM is very sensitive to small 
changes of the stability criterion Ax/At and the artificial viscosity term 8. For the same number of 
nodes, the computer time required with the CIM is more than that with the MOC and this is 
expected because of the imposed stability criterion. It may seem that the proposed CIM has 
discarded the major advantage of large time step that is normally used in an implicit approach. But 
for the accurate prediction of the fast pressure transients such as these, the stability criterion 
rule must be employed at the expense of computer time. 

The comparison of pressure transients which are theoretically predicted using the CIM and the 
MOC, with the experimental results shows that both methods are equally valid for one- 
dimensional analysis of pressure transients at  high Reynolds number. At low Reynolds number, 
both methods lead to theoretical results which differ from the experimental results, after the first 
transient step. However, two-dimensional analysis of transient flow leads to better results and, for 
this purpose, the implicit method is better suited than the method of characteristics; the results will 
be presented later. 

LIST O F  SYMBOLS 

Matrix of coefficients 
Column of matrix 
Acoustic velocity 
Diameter of the pipe 
Young’s modulus of the pipe material 
Coeficients 
Friction factor 
Coefficients 
Acceleration due to gravity 
Pressure head in height of water column 
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Any node in the x-direction 
Length of the pipe 
Number of nodes in the x-direction 
Average pressure at a cross-section 
Thickness of the pipe 
Time 
Mean axial velocity at a cross-section 
Horizontal distance along the pipe 
Elevation of the pipe 
Time increment 
Linear distance increment 
Artificial viscosity 
Viscosity 
Density of the liquid 
Variable representing either p or u 
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